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Figure 1: (a) Syntax for data/widget instance initialization, transformations, and loading dashboard. (b) A dashboard widget
with interconnected charts, which can be composed programmatically or interactively. Users can filter or group data items by
brushing or selecting visual objects. Filter view displays currently applied filters and table view shows raw data.

ABSTRACT
Data-centric NLP is a highly iterative process requiring careful
exploration of text data throughout entire model development life-
cycle. Unfortunately, existing data exploration tools are not suitable
to support data-centric NLP because of workflow discontinuity and
lack of support for unstructured text. In response, we propose Wee-
dle, a seamless and customizable exploratory text analysis system
for data-centric NLP. Weedle is equipped with built-in text transfor-
mation operations and a suite of visual analysis features. With its
widget, users can compose customizable dashboards interactively
and programmatically in computational notebooks.

CCS CONCEPTS
• Human-centered computing → Interactive systems and
tools;Visual analytics; •Computingmethodologies→Natural
language processing.
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1 INTRODUCTION
With the widespread success of common model architectures such
as BERT [4] in various applications, the attention of the machine
learning community is shifting towards enhancing the quality of
the data used in training and evaluation, i.e., data-centric AI. In
contrast to traditional model-centric approaches to build a better
model given benchmark datasets, the goal of data-centric AI is to
iteratively improve the quality of the underlying data given a fixed
model [8]. To achieve this, careful examination and diagnosis of
data throughout the whole machine learning (ML) lifecycle is essen-
tial. During data preparation, researchers need to check for the
amount of data (collection), label consistency (annotation), noisy
samples or missing entries (wrangling), coverage and bias issues
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Visualization Transformation
Table view simple overview/statistics of data, class distribution

Bar chart / histogram
class distribution, word count, ngram count,
data item count per matching condition, document length,
punctuation analysis, feature importance, embedding visualization

Line chart document length, numerical trend over time

Scatter plot t-SNE distribution, bivariate correlation, data item distribution,
data item distribution with clustering, numerical trend over time

KDE plot word count, document length
Pie chart class distribution
Treemap word count

Table 1: Used transformation functions per visualization type
from top 30 most voted Kaggle notebooks with NLP tag.

(assessment), etc. During modeling, error analysis on underperform-
ing data subsets is followed by additional iterations of collecting
or wrangling more data and labels. After deployment, they need to
monitor outputs to avoid performance degradation due to concept
drift or data drift [8].

To understand, characterize, and diagnose the data during var-
ious stages of ML lifecycle, data exploration techniques can be
employed. Exploratory data analysis (EDA)1 includes a variety of
approaches to explore data such as descriptive statistics, visualiza-
tions, or inspecting data samples [13]. While EDA generally occurs
in the beginning of ML workflow to guide further steps, e.g., se-
lection of techniques and tools [2], it is an iterative process that is
highly intertwined with other steps [15, 17]. For example, analysts
examined the intermediate results to discover heuristic rules to
clean data during data wrangling or to identify underperforming
subset of data during model development [10].

Unfortunately, existing EDA tools face several limitations in pro-
viding support for exploratory text analysis for data-centric NLP.
First, these tools are separate from the rest of NLP pipelines, which
results in workflow discontinuity due to frequent tool switching
between iterations. Recent interview studies [2, 10, 15] report that
analysts use a mix of spreadsheets, programming languages, visu-
alization tools, database tools, and domain- or task-specific tools.
For instance, to visually explore data, a user first exports the data
to a tabular format and imports it in Tableau 2. Switching between
tools, users may experience increased logistic and cognitive over-
head [5] due to migrating data or writing glue codes. Thus, there
is a growing need for exploration tools that can be seamlessly inte-
grated with existing model development workflow. Another issue in
EDA for data-centric NLP is weak support for unstructured data
such as text. Since most EDA methods and tools are designed for
structured data (e.g., tables), analysts often have to transform their
data into new forms (e.g., text → word frequency, embeddings,
topic modeling) or examine a sampled subset [15]. However, these
extra transformation steps and subsequent EDA techniques can
be highly arbitrary depending on analysis goals and downstream
applications. To this end, a dedicated data model, operations, and
interfaces with built-in text support can facilitate text analysis.

There have been several efforts to mitigate some of these chal-
lenges. To eliminate tedious tool switching, systems such as B2 [16]
and DataPrep.EDA [9] or visualization libraries such as Altair [14]

1Following Wongsuphasawat et al. [15], we adopt a broad definition of EDA that aims
at both profiling (understanding and assessing data) and discovery (new insights).
2https://www.tableau.com/
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Figure 2: (a) Frequency of popular visualization packages for
python from 5K NLP-related notebooks. (b) Frequency of
functions from the top two packages from (a). Practitioners
seek for the overview of data in a tabular format (red bars),
bivariate analysis using bar, line, and scatter plots (blue bars),
and univariate analysis using histogram (green bar).

and Matplotlib [6] enable transitions between code and visual-
izations in computational notebooks. Plotly Dash 3, Panel 4, and
Symphony [3] allow users to compose dashboards in python envi-
ronments. Leam [5] offers built-in text transformation operations
based on a grammar for text analysis. However, these works either
lack built-in text support, require environment switching, have
task-specific designs without customizability and composablity,
or do not offer rich interactive visualizations that enable local or
subset-level analysis.

To address these issues, we present Weedle: Widget-Enabled
Exploratory Data analysis for NLP Experts. It is a seamless, cus-
tomizable EDA system with built-in text support and composable
dashboard. Weedle is implemented as a python package containing
a Jupyter widget, which can be seamlessly integrated with existing
ML development environment. Weedle’s data model and interactive
dashboard is tightly integrated with each other, grounded on our
analysis of public NLP-related notebooks from GitHub and Kaggle.

2 NOTEBOOK ANALYSIS
To understand current data exploration practices for NLP, we an-
alyzed public computational notebooks from GitHub and Kaggle.
We compiled a list of common text transformation functions by
exploring popular Kaggle notebooks that are tagged as NLP cate-
gory. We manually examined the top 30 notebooks that received
the most votes as of July 2022. We found that NLP practitioners
used popular transformation methods (e.g., jaccard score, tf-idf,
document clustering, distribution by labels) to convert text data to
a structured format for further analyses. As Table 1 shows, com-
monly used transformation operations included general overview
by printing data in a tabular format, frequent word distribution,
ngram count, document length, distribution by labels, and embed-
ding distribution. These transformed features are then explored
using different forms of visualizations such as bar, line, scatter, vio-
lin plot, etc. We also noticed that there were lots of repetitive code
snippets over multiple notebook cells, e.g., conducting the same
analysis for different slices of data or creating similar charts with
slightly different parameters, as the used visualization packages
were mostly static.

We conducted an additional step of analysis on the public note-
book dataset retrieved from github [12] to see if the various vi-
sualizations in Table 1 are actively used in real world settings by
practitioners. Out of the 1M notebooks in total, we sampled the
3https://plotly.com/
4https://panel.holoviz.org/
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Figure 3: (a) The high-level architecture of Weedle. Widget
object contains an underlying Data object. (b) Data object
keeps three stages of data—source, filtered, and aggregated—
based on user inputs from the dashboard.

most recent 80k notebooks and retrieved 5k notebooks that have
used NLP-specific packages such as nltk, gensim, and pyLDAvis.
We then searched for the import statements from the notebooks to
retrieve the frequently used visualization packages. As Figure 2a
describes, the most popular package used for visualization in ad-
dressing NLP topics was matplotlib, followed by a built-in plot
methods in pandas dataframe. Focusing on these two libraries, we
investigated which chart types are frequently used. Figure 2b shows
that users actively used the basic charts - bar, line, and scatter plots
along with plain table view rather than various types of visualiza-
tion methods including KDE, violin, and box plot. Thus, we choose
bar charts and scatter plots as our basic visualization methods since
it can support uni- and bi-variate analysis.

3 WEEDLE: EDA FOR DATA-CENTRIC NLP
Weedle is developed as a pip-installable python package. It con-
tains two main classes, data and widget (Figure 3a). Their designs
are influenced by our analysis on public notebooks in Section 2.
Data class manages all data-related operations, including loading
the source data, structuring data through text transformation func-
tions, query-based filtering, and aggregations on groups. Having
the instance of data class as an input, Widget class takes care of in-
teractive features, such as on-demand chart creation, chart editing,
and interactive filtering via brushing and selection, all of which
triggers corresponding data operations.

The frontend is implemented using ipywidget5 and Svelte6. The
underlying data operations utilize various NLP packages including
nltk, spacy, gensim, and transformers, along with data manage-
ment/analysis libraries such as numpy and pandas.

3.1 Data Model for Text Support
Our data model keeps three stages of data: source data, filtered
data, and aggregated data (Figure 3b) as DataFrames. Having one
source data, text transformations update the source data itself by
appending new columns based on the source column provided
by users. For filtered data and aggregated data, Weedle keeps the
history of explorations for provenance management.

Our system currently supports 6 data types: text, categorical,
numerical, dict with categorical keys and numerical values (e.g.,
keywords and their frequency), vector (e.g., tf-idf, sentence embed-
dings), and SpanArray [11] (e.g., array of token and its POS tag
pairs). The data type of each column can be given by the user or
inferred automatically by our heuristic rules.
5https://ipywidgets.readthedocs.io/en/stable/
6https://svelte.dev/
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Figure 4: Interactive filtering for subset analysis. All charts
are interconnected by sharedfilters. (b) Users can select visual
components, i.e., bars and dots, via clicking (top) or brushing
(bottom) to apply filters. (a) and (c) shows the widget status
before and after the filtering interaction, correspondingly.

Our system supports the built-in text transformations that can
be triggered only with the simple parameters as shown in Fig-
ure 1a. This includes document length, word count, word embed-
ding, named entity recognition, tf-idf, topic modeling, sentiment
analysis, and part-of-speech (POS) tagging. Users can pass on op-
tional parameters, e.g., custom stopwords list for creating bag of
words. Our system also supports a count operation that captures the
number of occurrences per each data item given a set of keywords
or regular expression patterns. Each transformation operation ap-
pends the output data as a new column (see Figure 3b). In addition,
our system allows users to plug-in any custom transformation op-
eration as a python function. For example, given a title text and a
content text, generate an embedding of the combined text using a
fine-tuned language model.

Grouping and aggregating operations should differ by the types
of input data columns. For grouping a numerical feature, binning
is performed by default. After grouping, aggregation operations
calculate a representative value for each group. Built-in aggregation
methods include count, average, min/max, etc for numerical and dict
typed features and count, number of unique values for categorical
features. Also, users can plug in custom aggregation functions.

3.2 Composable Dashboard with Multiple
Coordinated Charts

Weedle contains a composable dashboard widget that facilitates
EDA within computational notebooks. Users can build the dash-
board on-demand by providing configurations programmatically
(as parameters to Widget class) or interactively in a widget (see
Figure 1b). The dashboard consists of the chart view, the filter view,
the table view, and the menu bar. All components are linked via
selection and filtering interactions. Users can resize the widget and
its view components to allocate more space if needed.

The chart view shows multiple coordinated visualizations of
underlying data. Users can flexibly change the size or layout of
individual charts in the chart view via dragging. To add a visual-
ization in the chart view, users can click ‘Add chart’ button in the
menu bar. This will open a popup modal to set chart configurations
such as chart type, which feature columns to use, grouping and
aggregation options, etc. Currently Weedle supports two types of
charts, bar and scatter. The system itself has the control on the
inputs for attributes that only provides the right combinations of
attributes and the available aggregations based on the cases regard-
ing data types. Using a menu button on the top right of each chart,
users can modify its configuration, remove the chart, or export the
visualization as an image file. Users can interact with visual objects
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in the chart (e.g., bars and dots) to understand what it represents
(e.g., a data item or a group of data items) and create a filter with se-
lected data subset. As in Figure 4, users can either individually click
visual objects one by one while holding a shift key, or use brushing
to create a bounding box to select visual objects. After selecting
visual objects, clicking right mouse button will automatically add
a filter with the corresponding condition. The filters are shared
in all views, so a filtering interaction updates the entire charts as
Figure 4c illustrates.

The filter view contains the query input box and shows a list
of currently applied filters. Filters can be based on feature values,
data item ids, or query text, which are denoted by icons in the filter
list. A filter can be removed by clicking the ‘x’ icon in the filter list.
Using the query input box on the top of the filter view, users can
add a query-based filter. The syntax of query filters simply follows
the if statement format in Python. For example, if users would like
to see the data where the document length (column name) is higher
than 500, the query would be ‘document length > 500’. In addition,
filters can be added from the chart view as described above or from
notebook cells programmatically. When a filter is added or removed,
underlying data operations are triggered and then the chart view
and the table view are updated correspondingly.

The table view displays raw data, allowing users to inspect indi-
vidual items. Users can sort the table by columns. Each row in the
table view is expandable to show long entries. Users can hide the
table view using the button in the menu bar.

All widget configurations (e.g., chart types, grouping and aggre-
gation attributes, and filters) are updated in a real-time manner
through user interactions in frontend as well as in notebook cells.
This enables not only the effective communication between the
frontend and backend, but also allows the system to keep track of
analysis history, so that the users can save or load the dashboard
locally by importing/exporting the configurations. Also, individual
charts can be saved as a PNG image for further use.

4 USE CASE: SENTIMENT ANALYSIS
We present a use case to demonstrate the workflow of Weedle in
EDA for data-centric NLP.7 We suppose that a speculative user
who is working on the project that requires sentiment classification
model for airline reviews. She is using Twitter US Airline review
dataset [1], and she first loads the dataframe on the data instance.
Weedle automatically recognizes data types for columns, and she
can also manually assign the types. To examine data characteristics,
she performs the built-in functions to generate columns for docu-
ment length, tf-idf, bag-of-words, topic modeling, etc. She proceeds
to the dashboard, and creates several charts, including: bar charts
for (1) distribution of sentiment labels, (2) average document length
for each sentiment label, (3) topic distribution for each sentiment
label, (4) top keyword distribution, and (5) scatter plot for the 2D
projection of tf-idf scores. She explores several variables by select-
ing visual objects and adds filters to update the charts. For example,
she first wants to see if there is any difference on the average docu-
ment lengths of positive and negative labeled data. She finds out
that negative reviews tend to be longer than positive ones. She
wonders if there is any correlation between tf-idf score range and

7Demo video is available at https://youtu.be/vZSTkWKqVqU.

sees that the labels are evenly distributed over entire tf-idf range.
She generates the predicted sentiment labels with a pre-trained
model, then creates one more bar chart for predicted label for error
rates and analysis. Finally she finds out that the accuracy on the
‘positive’ reviews is relatively low, and she suspects that the first
viable issue might be the data imbalance.

5 LIMITATION AND FUTUREWORK
Computational overhead due to frequent filtering and aggregation
operations may hinder users’ interaction experience. Potential solu-
tions can be caching, efficient indexing using databases, incremental
computations [7]. Our current evaluation is limited to a specific
use case. To evaluate the applicability of our tool for various NLP
applications, we plan to recruit NLP experts and conduct an experi-
mental study with their own datasets. Other lines of future work
include extending data model, mixed-initiative data diagnosis, etc.
Also, we are currently adding more text transformation operations
and augmenting interactions between components in the widget to
facilitate deeper exploration. We plan to make Weedle public.
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